

GATE - ELECTRICAL ENGINEERING MOCK TEST PAPER

- There are a total of 65 questions carrying 100 marks.
- Questions (1-25) will carry 1-mark each and questions (26-55) will carry 2-marks each.
- Questions (56-65) belongs to general aptitude (GA). Questions (56-60) will carry 1-mark each, and question (61-65) will carry 2-marks each
- For Q.1-25 and Q.56-601/3 mark will be deducted for each wrong answer.For Q.26-51 and Q. 61-65 2/3 mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked questions. For Q. 52 \& 54 2/3 mark will be deducted. There is no negative marking for Q. 53 \& Q.55.
Q.48-51 are common data questions. If first question is attempted wrongly then answer of secbnd question will not be evaluated.

Pattern of questions : MCQs \& Numerical

- Total marks : 100
- Duration of test : 3 Hours

VPM CLASSES

For IIT-JAM, JNU, GATE, NET, NIMCET and Other Entrance Exams
1-C-8, Sheela Chowdhary Road, Talwandi, Kota (Raj.) Tel No. 0744-2429614
Web Site www.vpmclasses.com E-mail-vpmclasses@yahoo.com

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

Q 1-25 (1 MARK EACH)

1. A transformer operates most efficiently at $3 / 4$ th full load. Its iron $\left(\mathrm{P}_{\mathrm{I}}\right)$ and copper loss $\left(\mathrm{P}_{\mathrm{Cu}}\right)$ are related as:
(A) $\mathrm{P}_{\mathrm{I}} / \mathrm{P}_{\mathrm{Cu}}=16 / 9$
(B) $P_{1} / P_{C u}=4 / 3$
(C) $P_{f} / P_{C u}=3 / 4$
(D) $\mathrm{P}_{\mathrm{I}} / \mathrm{P}_{\mathrm{Cu}}=9 / 16$
2. For a $4 \mathrm{KVA}, 200 / 400 \mathrm{~V}, 50 \mathrm{~Hz}, 1$ - phase transformer, catculate the efficiency, when supplying a full - load secondary current at 0.8 lagging power factor. The following are the test results:

Open circuit with 200 V applied to the L.V. side: $0.8 \mathrm{~A}, 70 \mathrm{~W}$. Short circuit with 20 V applied to the H.V. side: $10 \mathrm{~A}, 60 \mathrm{~W}$.
(A) 96.1%
(B) 76.3%
(C) 59.2%
(D) 66.7%
3. The shaft output of a three-phase $60-\mathrm{Hz}$ induction motor is 80 KW . The friction and windage losses are 920 W , the stator core loss is 4300 W and the stator copper loss is 2690 W . The rotor current and rotor resistance referred to stator are respectively 110 A and 0.15 . If the slip is 3.8%, what is the percent efficiency?
(A)
(B) 87.81%
(C) 96.1%
(D) 78.7%
4. A $2.2 \mathrm{kVA}, 440 / 220 \mathrm{~V}, 50 \mathrm{~Hz}$, step-down transformer has the following parameters referred to the primary side : $R_{e 1}=3$ ohms, $X_{e 1}=4$ ohms, $R_{c 1}=2.5 \mathrm{~K}$ ohms and $=$

2Kohms. The transformer is operating at full-load with a power-factor of 0.707 lagging. Determine the voltage regulation of the transformer.
(A) 11.25%
(B) 34.30%
(C) 22.50%
(D) None of these
5. A universal motor (ac-operated) has a 2-pole armature with 960 conductors. At a certain load the motor speed is 5000 rpm and the armature current is 4.6 Amps, the armature terminal voltage and input power are respectively 100 Volts and 300 Watts. Assuming an armature resistance of 3.5 ohm .Effective armature reactance is
(A) 16.48
(B) 46.18
(C) 18.64
(D) 14.86
6. A 3-phase induction motor has a starting torque of 100% and a maximum torque of 200% of full load torque. The Slip at maximum torque will be \qquad .
7. An unfinished moving iron voltmeter is used to measure the voltage in an a.c. circuit .If a stray d.c. magnetic field having a component along the axis of the meter coil appears, the meter reading would be
(A) unaffected
(B) decreased
(C) increased
(D) either decreased or increased depending on the direction of the d.c. field
8. The impulse response of an $R-L$ circuit is a
(A) rising exponential function
(B) decaying exponential function
(C) step function
(D) parabolic function
9. Following are the value of a function

$$
y(x): y(-1)=5, y(0), y(1)=8
$$

$\frac{d y}{d x}$ at $x=0$ as per Newton's central difference scheme is \qquad
10. In the Figure given below, 4 the initial capacitor voltage is zero. The switch is closed at $t=$ 0 . The final steady - state voltage across the capacitor is

(D) 0
11. If $S=\int_{1}^{\infty} x^{-3} \mathrm{dx}$, then S has the value
(A)
$\frac{-1}{3}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$

(D) 1

12. The energy stored in the magnetic field at a solenoid 30 cm long and 3 cm diameter wound with 1000 turns of wire carrying a current at 10 A , is \qquad Joules.
13. The current wave from in a pure resistor at $10 \square$ is shown in the given figure. Power dissipated in the resistor is \qquad W.

14. The circuit shown in the figure is in steady state, when the switch is closed at $t=0$. Assuming that the inductance is ideal, the current through the inductor at $t=0^{+}$equals

(A) 0 A
(B) 0.5 A
(C) 1 A
(D) $2 A$
15. When a unit impulse voltage is applied to an inductor of 1 H , the energy supplied by the source is +1 J.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

CLASSES

16. A load centre is at an equidistant from the two thermal generating stations G_{1} and G_{2} as shown in the figure. The fuel cost characteristics of the generating stations are given by

$\mathrm{F}_{1}=\mathrm{a}+\mathrm{bP}_{1}+\mathrm{cP}_{1}^{2} \mathrm{Rs} /$ hour
$\mathrm{F}_{2}=\mathrm{a}+\mathrm{bP}_{2}+2 \mathrm{cP}_{2}{ }^{2} \mathrm{Rs} /$ hour
where P_{1} and P_{2}, are the generation in MW of G_{1} and G_{2} respectively.
For most economic generation to meet 300 MW of load, P_{1} and P_{2}, respectively, are
(A) 150,150
(B) 100,200
(C) 200,100
(D) 175,125
17. The final value of $L^{-1} \frac{2 s+1}{s^{4}+8 s^{3}+16 s^{2}+s}$ is \qquad .
18. The cireuit shown in the figure is

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

C L A S S E 5
(A) a voltage source with voltage $\frac{r V}{R_{1} / / R_{2}}$
(B) a voltage source with voltage $\frac{r / / R_{2}}{R_{1}} V$
(C) a current source with current $\frac{r / / R_{2}}{R_{1}+R_{2}} \frac{V}{r}$
(D) a current source with current $\frac{R_{2}}{R_{1}+R_{2}} \cdot \frac{V}{r}$
19. The resistance of a strip of copper of rectangular cross - section is $2 \square$. A metal of resistivity twice that of copper is coated on its upper surface to a thickness equal to that of copper strip. The resistance of composite strip will be
(A) 6
(B) $4 / 3$
(C) $3 / 2 \square$
(D) $3 / 4 \square$
20. Select the circuit which will produce the given output Q for the input signals X 1 and X 2 given in the figure

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243 Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

(B)

(C)

(D)

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
21. The current through an electrical conductor in 1 ampere when the temperature of the conductor is $0^{\circ} \mathrm{C}$ and 0.7 ampere when the temperature is $100^{\circ} \mathrm{C}$. The current when the temperature of the conductor is $1200^{\circ} \mathrm{C}$ must be
(A) 0.08 A
(B) 0.16 A
(C) 0.32 A
(D) 0.64 A
22. The circuit shown has $i(t)=10 \sin (120 \square t)$. The power (time average power) dissipated in R is

$$
\mathrm{L}=\frac{1}{120} \pi \mathrm{H}, \mathrm{C}=\frac{1}{60} \pi \mathrm{H}, \mathrm{R}=10 \mathrm{hm} .
$$

(A) 25 watts
(B) 100 watts
(C) $\frac{10}{\sqrt{2}}$ watts
(D) 50 watts
23. The two windings of a transformer have an inductance of 2 Henrys each. If the mutual inductance between them is also 2 Henrys, then
(A) the transformer is an ideal transformer
(B) the turns ratio of the transformer is also two
(C) it is a perfect transformer
(D) none of these

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
24. A resistance R.and inductance of LH are connected across $240 \mathrm{~V}, \mathrm{~Hz}$ supply. Power dissipated in the circuit is 300 W and the voltage across R is 100 V . In order to improve the power factor to unity, the capacitor that is to be connected in series should have a value of
(A) $43.7 \mu \mathrm{~F}$
(B) $4.37 \mu \mathrm{~F}$
(C) $437 \mu \mathrm{~F}$
(D) $0.437 \mu \mathrm{~F}$
25. If the product of matrix
$A=\left[\begin{array}{cc}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{array}\right]$ and
$B=\left[\begin{array}{cc}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{array}\right]$
is a null matrix , then \square and \square differ by
(A) an odd multiple of
(B) an even multiple of \square
(C) an odd multiple of $\square / 2$
(D) an even multiple of $\square / 2$

Q 26-55 (2 MARKS EACH)

26. The sum of the eigen values of the matrix $\left(\begin{array}{ll}3 & 4 \\ x & 1\end{array}\right)$ for real and negative values of x
(A) greater than zero
(B) less than zero
(C) zero
(D) dependent of the values of x
27. The value of $\int_{0}^{5 \pi}(2-\sin x) d x$ is
(A) >0
(B) 2

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.
(C) 0
(D) undefined
28. Given $f(x, y)=x^{2}+y^{2}$. Then ${ }^{2} f$ is
(A) 4
(B) 2
(C) 0
(D) $4(x+y)^{2}$
29. Find the node voltage V_{A}.

(A). 6 V
(B). 12 V
(C). 4.28 V
(D). 3 V
30. The value of y as $t \square$ for an initial value of $y(1)=0$, for the differential equation $\left(4 t^{2}+1\right) \frac{d y}{d t} 8 y t-t=0$ is
(A)
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.
(D) $\frac{1}{8}$
31. Taylor series expansion of the function,
$F(x)=\frac{x}{1+x}$ around $x=0$ is
(A) $x+x^{2}+x^{3}+x^{4} \ldots \ldots$
(B) $1=x+x^{2}+x^{3}+x^{4} \ldots$
(C) $2 x+4 x^{2}+8 x^{3}+16 x^{4} \ldots$
(D) $x-x^{2}+x^{3}-x^{4} \ldots$
32. Three insulating materials with same maximum working stress and permittivities 2.5, 3.0, 4.0, are used in a single core cable. The location of the materials with respect to the core of the cable will be
\qquad _.
33. The incremental generating costs of two generating units are given by

$$
\begin{aligned}
& I C_{1}=0.1 \mathrm{X}+20 \mathrm{Rs} / \mathrm{MWhr} \\
& I C_{2}=0.15 \mathrm{Y}+18 \mathrm{Rs} / \mathrm{MWhr} .
\end{aligned}
$$

Where X and Y are power (in MW) generated by the two units. For a total demand of 300 MW. The values (in MW) of X and Y will be respectively \qquad .
34. Solving $x^{2}-2=0$ by Newton Raphson technique, when initial guess $x_{0}=1.0$, then subsequent estimate of x (i.e. x_{1}) will be
(A) 1.414
(B) 1.5
(C) 2.0
(D) none of these
35. The system shown in the figure is

(A) stable
(B) unstable
(C) conditionally stable
(D) Stable for input u_{1}, but unstable for input u_{2}
36. A single - phase fully controlled thyristor bridge ac - dc converter is operating at a firing angle 25° and an overlap angle 10° with constant dc output current of 20 A . The fundamental power factor (displacement factor) at input ac mains is
(A) 0.78
(B) 0.827
(C) 0.866
(D) 0.9
37. A three-phase, fully controlled thyristor bridge converter is used as line commutated inverter to feed 50 kW power at 420 V dc to a three - phase, 415 V (line), 50 Hz ac mains. Consider dc link current to be constant. The rms current of the thyristor is
(A) 119.05 A
(B) 79.37 A
(C) 68.73 A
(D) 39.68 A
38. In a transformer zero voltage regulation at full load is
(A) not possible
(B) Possible at unity power factor load
(C) Possible at leading power factor load
(D) Possible at lagging without any controller, is
39. The input signal $V_{\text {in }}$ shown in the figure is a 1 kHz square wave voltage that alternates between +7 V and -7 V with a 50% duty cycle. Both transistors have the same current gain, which is large .The circuit delivers power to the load resistor R_{L}. What is the efficiency of this circuit for the given input? Choose the closest answer.

(A) 46%
(B) 55%
(C) 63%
(D) 92%

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243 Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 14
40. The switch S is the circuit of the figure is initially closed. It is opened at time $T=0$. You may neglect the Zener diode forward voltage drops. What is the behaviour of $\mathrm{V}_{\text {out }}$ for $\mathrm{t}>0$?

(A) It makes a transition from -5 V to +5 V at $t=12.98 \mathrm{~s}$.
(B) It makes a transition from $-5 \mathrm{~V} t 6+5 \mathrm{~V}$ at $t=2.57 \square \mathrm{~s}$
(C) It makes a transition from +5 V to -5 V at $\mathrm{t}=12.98 \square \mathrm{~s}$
(D) It makes a transition from +5 V to -5 V at $=2.57 \square \mathrm{~s}$
41. A solid sphere made of insulating material has a radius R and has a total charge Q distributed uniformly in its volume. What is the magnitude of the electric field intensity , E , at a distancer $(0<r<R)$ inside the sphere ?

(D) $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q r}{r^{3}}$
42. Two wattmeters, which are connected to measure the total power on a three - phase system supplying a balanced load, read 10.5 kW and -2.5 kW , respectively, The power and the power factor, respectively, are
(A) $13.0 \mathrm{~kW}, 0.334$
(B) $13.0 \mathrm{~kW}, 0.684$
(C) $8.0 \mathrm{~kW}, 0.52$
(D) $8.0 \mathrm{~kW}, 0.334$
43. If a dc voltmeter is made from an ammeter having a full-scale deflection of 100 micro amperes, then its sensitivity (in k - ohm. (V) will be \qquad -.
44. Consider the inverting amplifier, using an ideal operational amplifier shown in the figure. The designer wishes to realize the input resistance seen by the small - signal source to be as large as possible, while keeping the voltage gain between - 10 and - 25 . The upper limit on R_{F} is $1 M \square$. The value of $R /$ should be

(A) Infinity
(B) $1 \mathrm{M} \square$
(C) $100 \mathrm{k} \square$
(D) $40 \mathrm{k} \square$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.
45. What is the current through R_{2} ?

(A) 3.19 A
(B) 319 mA
(C) 1.73 A
(D) 172 mA
46. The circuit shown in the figure

(A) is an oscillating circuit and its output is a square wave
(B) is one hose output remains stable in ' 1 ' state
(C) is one having output remains stable in ' 0 ' state
(D) having a single pulse of 3 time propagation delay.
47. In the given figure, if the input is a sinusoidal signal, the output will appear as shown in

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: $9001297111,9829567114,9829597114,9001297243$
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 17

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

(a)

(b)

(c)

(d)

COMMON DATA QUES. (48-49)

Consider the circuit,

48. The value of I_{SC} is \qquad -

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
49. Value of $\mathrm{R}_{\text {Th }}$ ' by applying 1 A source is -
(A) $\frac{38}{9} \mathrm{~W}$
(B) $\frac{58}{9} \mathrm{~W}$
(C) $\frac{48}{9} \mathrm{~W}$
(D) $\frac{28}{9} \mathrm{~W}$

Common Data Ques.(50-51)
A universal motor (a.c. operated) has a 2-pole armature with 960 conductors. At a certain load the motor speed is 5000 r.p.m. and the armature current is 4.6 A . The armature terminal voltage and input are respectively 100 y and 300 W . Compute the following, assuming an armature resistance of $3.5 \square$
50. Effective armature reactance
(A) 3.58
(B) 16.48
(C) 14.93
(D) 12.64
51. Max. value of fuseful flux per pole -
(A) $1.048 \times 10^{-3} \mathrm{wb}$
(B) $2.096 \times 10^{-3} \mathrm{wb}$
(C) $3.056 \times 10^{-3} \mathrm{wb}$
(D) None of these

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714

Statement for Linked Answer Questions 52 and 53

A state variable system $X(t)=\left[\begin{array}{cc}0 & 1 \\ 0 & -3\end{array}\right] X(t)+\left[\begin{array}{l}1 \\ 0\end{array}\right] u(t)$ with the initial condition $X(0)[-13]^{\top}$ and the unit step input $u(t)$ has
52. The state transition matrix
(A) $\left[\begin{array}{cc}1 & \frac{1}{3}\left(1-e^{-3 t}\right) \\ 0 & e^{-3 t}\end{array}\right]$
(B) $\left[\begin{array}{cc}1 & \frac{1}{3}\left(e^{-t}-e^{-3 t}\right) \\ 0 & e^{-t}\end{array}\right]$
(C) $\left[\begin{array}{cc}1 & \frac{1}{3}\left(e^{-t}-e^{-3 t}\right) \\ 0 & e^{-3 t}\end{array}\right]$
(D) $\left[\begin{array}{cc}1 & \left(1-e^{-t}\right) \\ 0 & e^{-t}\end{array}\right]$
53. The state transition equation
(A) $X(t)=\left[\begin{array}{c}t-e^{-t} \\ e^{-t}\end{array}\right]$
(B)

(C) $X(t)=\left[\begin{array}{c}t-e^{-3 t} \\ 3 e^{-3 t}\end{array}\right]$
(D) $X(t)=\left[\begin{array}{c}t-e^{-3 t} \\ e^{-t}\end{array}\right]$

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714

Statement for Linked Answer Questions 54 and 55.

A $1000 \mathrm{kVA}, 6.6 \mathrm{kV}, 3$ - phase star connected cylindrical pole synchronous generator has a synchronous reactance of $20 \square$. Neglect the armature resistance and consider operation at full load and unity power factor.
54. The induced emf (line - to - line) is close to
(A) 5.5 kV
(B) 7.2 kV
(C) 9.6 kV
(D) 12.5 kV
55. The power (or torque) angle is close to
(A) 13.9°
(B) 18.3°
(C) 24.6°
(D) 33.0°

GENERAL APTITUDE

Q 56-60 (1 MARK EACH)
56. REASON : SFBTPO THINK :?
(A) SGHMJ
(B) UIJOL
(C) UHNKI
(D) UJKPM
57. The Antonym of MORTAL is
(A) Divine
(B) Immortal
(C) Spiritual
(D) Eternal
58. The Synonym of ALERT is
(A) Energetic
(B) Observant
(C) Intelligent
(D) Watchful
59. A shopkeeper expects a gain of 22.5% on his cost price. If in a week, bis sale was of Rs. 392, what was his profit?
(A) Rs. 18.20
(B) Rs. 70
(C) Rs. 72
(D) Rs. 88.25
60. IF '+' stands for '-' , '-' stands for ' x ', 'x' stands for ' $-\quad$ 'and ' $-\div$ 'stands for ' + 'then what is the value of $56 \times 7 \div 13-11+15-8 \div 2-7$?
(A)30
(B) 45
(C)60
(D) 90

Q 61-65 (2 MARKS EACH)

61. 'Captain' is related to 'Soldier' in the same way as 'Leader' is related to
(A) Chair
(B) Followers
(C) Party
(D) Minister
62.

PORK:PIG
(A) rooster:chicken
(B) mutton:sheep
(C) steer:beef
(D) lobster:crustacean
63. My uncle decided to take \qquad and my sister to the market.
(A) I
(B) mine
(C) me
(D) myself
64. Answer the question based on the given line graph.

Ratio of Exports to Imports (in terms of money in Rs. crores) of Two Companies Over the Years

In how many of the given years were the exports more than the imports for Company A?
(A) 2
(B) 3
(C) 4
(D) 5

Look at this series: $58,52,46,40,34, \ldots$ What number should come next?
(A) 26
(B) 28
(C) 30
(D) 32

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Phone: 0744-2429714 Website: www.vpmclas
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 23

Answer Key

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Answer	D	A	B	C	A	0.2679	D	B	1.5	B	C	0.15	270	C	0.5	C	1	D	B	B
Question	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Answer	B	A	C	A	C	A	A	A	C	D	D	$\begin{gathered} 4.0,3.0 \\ 2.5 \end{gathered}$	128	C	D	A	D	C	D	D
Question	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Answer	A	D	10	C	D	A	D	9/2V	A	B	A	A	C	B	C	B	B	D	C	B
Question	61	62	63	64	65															
Answer	B	B	C	B	B															

Hints and Solution

1.(D) If P_{Cu} is the Cu loss at full load, its value at 75% of fulliload is
$\mathrm{P}_{\mathrm{Cu}} \times(0.75)^{2}=9 / 16 \mathrm{P}_{\mathrm{Cu}}$
At maximum efficiency, it equals the iron loss P_{ρ} which remains constant through out.
Hence max. efficiency at

$$
\begin{aligned}
& \mathrm{P}_{1}=9 / 16 \mathrm{P}_{\mathrm{Cu}} \\
& \text { Or }_{1} / \mathrm{P}_{\mathrm{Cu}}=9 / 16
\end{aligned}
$$

2.(A) The transformer is supplying full-load secondary current at 0.8 lagging power factor

Full load secondary current $=\frac{4 \mathrm{KVA}}{400 \mathrm{~V}}=\frac{4000 \mathrm{VA}}{400 \mathrm{~V}}=10 \mathrm{~A}$
From the open circlit test, core losses $=70 \mathrm{~W}$
From the S.C. test, full load copper losses $=60 \mathrm{~W}$
Efficiency

$$
\begin{aligned}
& \eta=\left(\frac{V_{2} I_{2} \cos \theta}{V_{2} \mathrm{I}_{2} \cos \theta+\text { core losses }+ \text { full loadcopper losses }}\right) \times 100=\left(\frac{4000 \times 0.8}{4000 \times 0.8+70+60}\right) \times 100 \\
& =\left(\frac{3200}{3300}\right) \times 100=96.1 \%
\end{aligned}
$$

3.(B) $\quad P_{m}=$ output $=80 \mathrm{KW}$

Windage and Friction losses $=920 \mathrm{~W}$
Stator core loss $=4300 \mathrm{~W}$
Stator copper loss $=2690 \mathrm{~W}$
Slip $=3.8 \%$
Gross mech output $=P_{m}+$ windage and friction losses

$$
\begin{aligned}
& =80 \mathrm{KW}+920 \mathrm{~W} \\
& =80.92 \mathrm{KW}
\end{aligned}
$$

rotor input $/$ rotor gross output $=1 /(1-s)$
rotor input $=$ rotor gross output $/(1-\mathrm{s})=80.92 \mathrm{KW} /(1-0.038)=84.11 \mathrm{~kW}$
we know that ;
stator input $=$ rotor input + stator core loss + stator Cu loss

$$
=84.11 \mathrm{KW}+4300 \mathrm{~W}+2690 \mathrm{~W}=91 \mathrm{KW}
$$

$\% \square=$ (rotor output / stator input) $\times 100$ $=(80 / 91.1) \times 100 \mathrm{KW}$
$=87.81 \%$
4.(C) Given: $\mathrm{P}_{0}=2.2 \mathrm{kVA}, 440 / 220 \mathrm{~V}, 50 \mathrm{~Hz}$
$R_{01}=3 \square, X_{61}=4 \square, R_{m}=2.5 k-X_{m}=X_{0}=2 k \square$ $\cos \square=0.707$ lagging Therefore $\sin =0.707$ Voltage regutation

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714

Voltage drop $=10(3 \times 0.707+4 \times 0.707)$

$$
\begin{aligned}
& =10(4.950) \\
& =49.50 \mathrm{Volts}
\end{aligned}
$$

Therefore, Voltage regulation $=\left(\right.$ voltage $\left.\operatorname{drop} / V_{2}\right) \times 100$
5.(A) $\quad P=2 ; Z=960 ; N=5000$

$$
\begin{aligned}
& 4 \begin{array}{l}
I_{i}=I_{a}=4.6 \text { amp } ; V_{1}=100 \text { volts } \\
P_{i}=300 \mathrm{~W} \text { find } X_{a} \text { and } \square m=? \\
P_{1}=V_{1} I_{1} \cos \square \\
\\
\cos \square=P_{1} / V_{1} I_{1}=300 / 100 \times 4.6=0.652 \\
E_{b d c}=V-I_{a} R_{a} \text { or }(N \square P Z / 60 \mathrm{~A}) \\
=100-4.6 \times 3.5
\end{array}
\end{aligned}
$$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
=100-16.1=83.9 \text { volts }
$$

$E_{b a c}=V \cos \square-I_{a} R_{a}$
$=100 \times 0.652-4.6 \times 3.5=49.11$ volts
And $V^{2}=\left(\left(E_{b a c}+I_{a} R_{a}\right)^{2}+\left(I_{a} X_{a}\right)^{2}\right.$ $\left(4.6 \mathrm{X}_{\mathrm{a}}\right)^{2}=100^{2}-(65-2)^{2}$
$21.16 \mathrm{Xa}^{2}=5749$
$X_{a}=16.48$ ohms
6. $\quad 0.2679$

Given: $\left(T_{s t} / T_{f}\right)=1 \quad \&\left(T_{\max } / T_{f}\right)=2$
$\square\left(T_{\text {st }} / T_{\text {max }}\right)=1 / 2=0.5$
let $a=R_{2} / X_{2}$

$$
\left(T_{s t} / T_{\text {max }}\right)=2 a /\left(1+a^{2}\right)=0.5 / 1
$$

$2 a\left(1+a^{2}\right)=1 / 2$
$4 a=1+a^{2}$
$a^{2}-4 a+1=0$
$a=\frac{4 \pm \sqrt{16-4 \times 1 \times 1}}{2}$

Toll Free: 1800-2000-092 Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

C L A S S E S
$a=\frac{4 \pm \sqrt{ } 12}{2}$
$a=3.73$ or 0.2679
$\mathrm{a}=$ slip at max torque $=0.2679$
7.(D) The meter reading will either decrease or increase depending upon the direction of flux.

As shown in figure let F_{m} be the flux due to meter coll and F_{s} is due to stray magnetic field, then resultant will be F. Similarly when F is in opposite direction. Thus the reading will either increase or decrease.
8.(B) $\quad \mathrm{I}(\mathrm{s})=\frac{\mathrm{V}(\mathrm{s})}{\mathrm{Z}(\mathrm{s})} ; \mathrm{Z}(\mathrm{s})=\mathrm{R}+\mathrm{Ls}$
$I(s)=\frac{V(s)}{R+L s} ;$ also $V(s)=1$
$I(s)=\frac{1}{R+L s}$

a decaying exponential function
9.

$$
\left(\frac{d y}{d x}\right)_{\text {atx }=0}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 28

$$
=\frac{y(1)-y(-1)}{1-(-1)}=\frac{8-5}{2}=1.5
$$

10.(B) At, $t=0^{+}$, capacitor is uncharged

At steady state condition, capacitor is open circuited

$$
V_{C}(\infty)=\frac{20}{10+10} \times 10=10 \text { volts }
$$

11.(C) $\mathrm{S}=\int_{1}^{\infty} \mathrm{x}^{-3} \mathrm{dx}=\left[\frac{\mathrm{x}^{-2}}{-2}\right]_{1}^{\infty}=\frac{1}{2}$
12. 0.15

$$
\begin{aligned}
\mathrm{L}=\frac{\mathrm{N}^{2} \mu_{0} \mathrm{~A}}{\mathrm{I}} & =\frac{10^{6} \times 4 \pi \times 10^{-7} \times \frac{\pi}{4} \times\left(9 \times 10^{-4}\right)}{0.3} \\
& =\frac{9 \pi^{2} \times 10^{-5}}{0.3}
\end{aligned} \quad \begin{aligned}
& \text { Energy }=\frac{1}{2} \mathrm{LI}^{2}=0.148 \text { or } 0,15 \text { Joules }
\end{aligned}
$$

13. 270
$I_{\text {rms }}^{2}=\frac{1}{3} \int_{0}^{3}\left(\frac{9}{3} t\right)^{2} \cdot d t=\left[\frac{1}{3} \times 9 \times \frac{t^{3}}{3}\right]_{0}^{3}=27 A^{2}$
$\square \quad$ Power $=I^{2} R=27 \times 10=270 \mathrm{~W}$
14.(C) At steady state, current,

By Lenz's law at $t=0^{+}$, current through inductor, I
1 Amp

15. 0.5

Current that flows is given by,

Toll Free: 1800-2000-092
Phone: 0744-2429714

Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com

E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 29

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
\begin{aligned}
& V(s)=s L 1 I(s) \\
& I=s I(s) I(s)=\frac{1}{s}=u(t)=1 \mathrm{~A}
\end{aligned}
$$

Energy supplied $=\frac{1}{2} \times 1 \times 1=\frac{1}{2}=0.5 \mathrm{~J}$.
16.(C) For economic generation $\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{P}_{1}}=\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{P}_{2}}$

$$
\begin{aligned}
& b+2 C P_{1}=b+4 C P_{2} \\
& P_{1}=2 P_{2} \\
& p_{1}+P_{2}=300 \\
& P_{1}=200 \mathrm{MW}, \text { and } P_{2}=100 \mathrm{MW}
\end{aligned}
$$

17. 1

$$
\begin{aligned}
& \operatorname{Limf}_{s \rightarrow \infty} f(t)=\operatorname{Lim}_{s \rightarrow 0} s F(s)=\operatorname{Lim}_{s \rightarrow 0} \frac{s(2 s+1)}{s^{4}+8 s^{3}+16 s^{2}+s} \\
& =\operatorname{Lim}_{s \rightarrow 0} \frac{2 s+1}{s^{3}+8 s^{2}+16 s+s}=1
\end{aligned}
$$

18.(D) It behaves as a current source
19.(B) Copper and coated metal strips have resistance 2 ohms respectively. These two strips are in parallel.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714

Resistance of composite strip $=\frac{2 \times 4}{2+4}=\frac{4}{3}$ ohms
20.(B)

Truth table of the above figure

X_{1}	x_{2}	x_{3}
1	0	1
0	0	1
0	1	0

21.(B) Let a be the temperature coefficient, then

$$
R_{t}=R_{0}(1+\square t)
$$

where R_{t} is resistance at $t_{0} C$ and R_{0} is resistance at $0 \circ \mathrm{C}$.
Assuming that for a given potential difference, I is proportional to $\frac{1}{R}$,

$$
\frac{\text { 1amp }}{0.7 a m p}=\frac{R_{0}(1+\alpha t)}{R_{0}}=1+\alpha .100
$$

$$
=0.0043 \text { per }{ }^{\circ} \mathrm{C}
$$

current, I at $1200^{\circ} \mathrm{C}$ is given by

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 31

$$
\frac{1}{\mathrm{~T}}=\frac{\mathrm{R}_{0}(1+\alpha .1200)}{\mathrm{R}_{0}}=1+\alpha .1200
$$

$\square \quad \mathrm{I}=-\frac{1}{6.16}=0.16 \mathrm{amp}$.
22.(A) Using the addition of admittances in parallel, s
$Y=Y_{L}+Y_{R}+Y_{C}=\frac{1}{j \omega L}+j \omega C=1+j$
The phasor voltage becomes $V=\frac{1}{Y}$
Using phasors in polar format,

$$
\begin{aligned}
& \mathrm{I}=10 \mathrm{e}^{-\mathrm{j} \square / 2} \\
& \mathrm{Y}=\sqrt{2} \mathrm{e}^{-\mathrm{j} \square / 4}
\end{aligned}
$$

The power (time average power) dissipated in R,

$$
\begin{aligned}
& P=\frac{1}{2} R e \frac{\left(V V^{*}\right)}{R}=25 \\
& V(t)=\frac{10}{\sqrt{2}} \cos \left(\omega t-\frac{3 \pi}{4}\right)
\end{aligned}
$$

From which, $P(\square)^{2}(t)=25$ watts.
23.(C) As, $K=\frac{M}{\sqrt{L_{1} L_{2}}}=\frac{2}{\sqrt{2 \times 2}}=1$

Hence it is a perfect transformer.
24.(A) $\frac{\mathrm{V}^{2}}{\mathrm{R}}=300, \quad$ or $\quad \mathrm{R}=\frac{100^{2}}{300}=\frac{100}{3} \Omega$
and $I R=V=100 \mathrm{~V}$ or $\quad I=\frac{100}{\left(\frac{100}{3}\right)}=3 \mathrm{amp}$.

Toll Free: 1800-2000-092
Phone: 0744-2429714
E-Mail: vpmclasses@vahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 32

For the p.f. to be equal to unity,

$$
\mathrm{I}(\square \mathrm{~L})=\mathrm{I}\left(\frac{1}{\omega \mathrm{C}}\right)=\mathrm{V}_{\mathrm{L}}
$$

or $\quad \frac{1}{\omega \mathrm{C}}=\sqrt{240^{2}-100^{2}}=218.17 \mathrm{Volt}$
or $\quad C=\frac{3}{2 \pi \times 50 \times 218.17}$
$=43.7 \times 10^{-6}=43.7 \mu \mathrm{~F}$.
25.(C) $\quad A B=\left[\begin{array}{ll}\cos \theta \cdot \cos \phi \cos (\theta-\phi) & \cos \theta \cdot \sin \phi \cdot \cos (\theta-\phi) \\ \cos \phi \sin \theta \cdot \cos (\theta-\phi) & \sin \theta \cdot \sin \phi \cos (\theta-\phi)\end{array}\right]$

$$
=\text { A null matrix, when } \cos (\tilde{0})=0
$$

i.e. if ($\tilde{\square} \square)$ is an odd multiple of $\left(\frac{\pi}{2}\right)$.
26.(A) Eigen values are given by the solution of equation,

Since x is real and negative, put $x=-k$, where k is positive constant

$$
\begin{aligned}
& (3-\square)(1-\square)+4 k=0 \\
& 2^{2}-4-3+4 k=0
\end{aligned}
$$

If \square_{1} and \square_{2} be the solutions of the above equation, then \square_{1} and \square_{2} are eigen values.
Now, Sum of eigen values $=$ Sum of roots of the above equation
i.e. $\quad \lambda_{1}+\lambda_{2}=\frac{-(-4)}{1}=4(>0)$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Website: www.vpmclasses.com
E-Maii: vpmclasses@vahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 33
27.(A) $\int_{0}^{5 \pi}(2-\sin x) d x=[2 x+\cos x]_{0}^{5 \pi}$

$$
=10 \square-1-1=10 \square-2>0
$$

28.(A) $f(x, y)=x^{2}+y^{2}$

$$
\begin{aligned}
& \nabla^{2} f=\vec{\nabla} \cdot \vec{\nabla}=\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}\right) \cdot\left(\vec{i} \frac{\partial}{\partial x}+\vec{j} \frac{\partial}{\partial y}\right)\left[x^{2}+y^{2}\right] \\
& =\frac{\partial}{\partial x^{2}}\left(x^{2}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(y^{2}\right)=4
\end{aligned}
$$

29.(C) $\quad\left(\left(\mathrm{V}_{\mathrm{a}}-12\right) / 49\right)+\left(\mathrm{V}_{\mathrm{a}} / 24\right)+\left(\left(\mathrm{V}_{\mathrm{a}}-6\right) / 80\right)=0$
$\left(\left(\mathrm{V}_{\mathrm{a}}-12\right)(1920)+\left(\mathrm{V}_{\mathrm{a}}\right)(3920)+\left(\mathrm{V}_{\mathrm{a}}-6\right)(1176)\right) / 94080=0$
$\mathrm{V}_{\mathrm{a}}(7016)-30096=0$
$\mathrm{V}_{\mathrm{a}}=30096 / 7016$
$\mathrm{V}_{\mathrm{a}}=4.28$
30.(D) Given, $\left(4 t^{2}+1\right) \frac{d y}{d t}+8 y t-t=0$

Hence solution of equation (i) is
$y\left(4 t^{2}+1\right)=\int \frac{t}{\left(4 t^{2}+1\right)} \cdot\left(4 t^{2}+1\right) d t+C=\frac{t^{2}}{2}+C$
$y=\frac{t^{2}}{2\left(4 t^{2}+1\right)}+\frac{C}{\left(4 t^{2}+1\right)}$
But $y(1)=0$, therefore $\quad 0=\frac{1}{10}+\frac{C}{5}$

$$
C=-\frac{1}{2}
$$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 34

From equation (ii), we have $y=\frac{t^{2}}{2\left(4 t^{2}+1\right)}-\frac{1}{2\left(4 t^{2}+1\right)}$

$$
\left.\square \quad y\right|_{t \rightarrow \infty}=\operatorname{Lt}_{t \rightarrow \infty} \frac{1}{2\left(4+1 / t^{2}\right)}-\frac{1}{2\left(4 t^{2}+1\right)}=\frac{1}{2(4+0)}-0=\frac{1}{8}
$$

31.(D) $f(x)=\frac{x}{1+x}$
$f(x)=f(0)$
$=f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{\underline{2}}(x-a)^{2}+\frac{f^{\prime \prime \prime}(0)}{\underline{3}} x^{3}+\ldots$
$=0+x+\left(-x^{2}\right)+x^{3}+$ \qquad
$=x-x^{2}+x^{3}+$ \qquad
32. $\quad 4.0$ 3.0, 2.5

When all the three materials are subjected to the same maximum stress,

$g_{\max }=\frac{\lambda}{2 \pi \varepsilon_{1} r}=\frac{\lambda}{2 \pi \varepsilon_{2} r_{2}}=\frac{\lambda}{2 \pi \varepsilon_{3} r_{2}}$
or
Since $r<r_{1}<r_{2}$,
Therefore

$$
\square_{1}>\square_{2}>\square_{3}
$$

Thus, the dielectric material with highest permittivity should be placed near the conductor and other layer in the descending order.
33. 128

For most economic load sharing

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$$
\mathrm{IC}_{1}=\mathrm{IC}_{2}
$$

We have $\quad X+Y=300 \mathrm{MW}$
and

$$
\begin{aligned}
0.1 x+20 & =0.15 Y+18 \\
& =0.15(300-X)+18 \\
& =45-0.15+18
\end{aligned}
$$

$\square \quad 025 \mathrm{X}=43$
or

$$
\text { X = } 172 \mathrm{MW}
$$

$$
Y=300-172=128 \mathrm{MW}
$$

34.(C) $x^{2}-2=0$

$$
\begin{gathered}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=1+\frac{1}{2}=1.5 \\
f\left(x_{0}\right)=12-2=-1 \\
f\left(x_{0}\right)=2 x \\
f\left(x_{0}\right)=2 x_{0}=2(1)=2
\end{gathered}
$$

35.(D) Transfer function for u_{1}

$$
\mathrm{TF}_{1}=\frac{(\mathrm{s}-1) /(\mathrm{s}+2)}{1+\left(\frac{\mathrm{s}-1}{\mathrm{~s}+2}\right) \cdot\left(\frac{1}{s-1}\right)}=\frac{(\mathrm{s}-2)}{(\mathrm{s}+3)}
$$

Hence stable.
Transfer function for $\mathbf{u}_{\mathbf{2}}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
$\mathrm{TF}_{2}=\frac{\left(\frac{1}{\mathrm{~s}-1}\right)}{1+\left(\frac{1}{\mathrm{~s}-1}\right)\left(\frac{s-1}{s+2}\right)}=\frac{1}{(\mathrm{~s}+3)(\mathrm{s}-1)}$
hence unstable, as it has pole at right side of s - plane.
36.(A)

$$
\begin{aligned}
& \mathrm{I}_{0}=\frac{\mathrm{V}_{\mathrm{m}}}{\omega \mathrm{~L}_{\mathrm{s}}}[\cos \alpha-\cos (\alpha+\mu)] \\
& 20=\frac{230 \times \sqrt{2}}{2 \times \pi \times 100 \mathrm{~L}_{\mathrm{s}}}\left[\cos 25^{\circ}-\cos (25+10)\right] \\
& \mathrm{L}_{\mathrm{S}}=.0045 \text { Henery } \\
& \mathrm{V}_{0}=\frac{2 \times \sqrt{2} \times 230}{\pi}
\end{aligned}
$$

$$
\operatorname{Cos} 25^{\circ}-\frac{2 \times \pi \times 50 \times 0.0045}{\pi} \times 20=178.65
$$

$$
\text { Displacement factor }=\frac{\mathrm{V}_{0} \mathrm{I}_{0}}{\mathrm{~V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}}
$$

37.(D)

$$
P=V_{d} \times I_{d}
$$

$$
50 \times 1000=420 \times I_{d}
$$

$$
I_{d}=119.05
$$

rms current of the thyristor $=\frac{19.05}{3}=39.68$
38.(C) Zero Voltage regulation at full load is possible at leading power factor load

$$
\begin{aligned}
& =V_{R} \cos \square-V_{R} \sin \square \\
& =45^{\circ}
\end{aligned}
$$

Hence-voltage regulation is zero.
39.(D) Efficiency of the given circuit is 92% because it is a class c amplifier and usually its efficiency is high all the four options containing $46 \%, 55 \%, 63 \%, 92 \%$. and among the four options the 92% is highest. The answer would be 92%.
40.(D) It is a limited circuit

It makes a transition from +5 V to -5 V

$$
20\left(1-e^{-t / R C}\right)=5 \times \frac{10}{110}=\text { Voltage across } 100 \mathrm{k} \square
$$

$R C=0.01 \times 10^{-6} \times 10^{3}$

$$
\mathrm{t}=2.57 \square \mathrm{~s}
$$

41.(A) By Gauss's theorem

$$
\int_{\mathrm{s}} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{Q}_{\mathrm{enc}}}{\varepsilon_{0}}
$$

where , $\quad Q_{\text {enc }}=$ charge enclosed in radius r

$$
\int_{\mathrm{s}} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{ds}}=\frac{\mathrm{Q}}{\frac{4}{3} \pi \mathrm{R}^{3}} \cdot \frac{4}{3} \pi \mathrm{r}^{3}
$$

or $\mathrm{E}\left(4 \square \mathrm{r}^{2}\right)=\frac{\mathrm{Qr}^{3}}{\mathrm{R}^{3}}$
or

$$
\mathrm{E}=\frac{\mathrm{Qr}}{4 \pi \varepsilon_{0} \mathrm{R}^{3}}
$$

42.(D) Total power $=10.5-2.5=8 \mathrm{~kW}$

$$
\begin{aligned}
\tan \square & =\sqrt{3} \times \frac{13}{8} \\
\cos \square & =0.334
\end{aligned}
$$

43. 10

Sensitivity $=\frac{\text { Total of resis tance of the inst }}{\text { Fill scas }}$

$$
=\frac{1}{10 \times 10^{-6}}=10 \mathrm{~K}-\text { ohm } / \mathrm{V}
$$

44.(C) If gain $=-25$, then $-25=-\frac{1 \times 10^{3}}{R_{1}}$

Now $\frac{V_{0}}{V_{\text {in }}}=-\frac{R_{f}}{R_{1}}$

Toll Free: 1800-2000-092
Phone: 0744-2429714
$\square \quad \mathrm{R}_{1}=\frac{1000}{25} \mathrm{k} \Omega=10 \mathrm{k} \Omega$
If gain $=-10$, then $R_{1}=100 \mathrm{k} \square$
45.(D) Applying KCL at node A and taking node B as reference:
$\left(15-\mathrm{V}_{\mathrm{a}}\right) / 68-\mathrm{V}_{\mathrm{a}} / 30-\left(\mathrm{V}_{\mathrm{a}}-8\right) / 100=0$
$\mathrm{V}_{\mathrm{a}}=5.1689 \mathrm{~V}$;
$\mathrm{Ir}_{2}=\mathrm{va} / 30=5.1689 / 30=0.172 \mathrm{~A}=172 \mathrm{~mA}$;
46.(A) The circuit shown in the figure

is an oscillating circuit and its output is a square wave
47.(D) Output will appear 180° out of phase to the input. So the option (D) is correct.
48.
$\stackrel{c}{\mathrm{C}} \mathrm{C} V$
$10+2\left(4 V_{S}-I_{S C}\right)-4 I_{S C}$

$$
\begin{aligned}
10+8 V_{s} \quad & =6 I_{s c} \\
V_{s} & =-2\left(4 V_{s}-I_{s c}\right) \\
9 V_{s} & =2 I_{s c}
\end{aligned}
$$

$$
I_{S C}=\frac{9}{2} \quad V_{S}=\frac{90}{38}
$$

$19 \mathrm{~V}_{\mathrm{S}}=10$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 39
49.(A) To determine $R_{T h}$ ' apply 1 A source

$$
\begin{aligned}
\mathrm{V}_{\mathrm{S}} & =-2\left(1+4 \mathrm{~V}_{\mathrm{S}}\right) \\
& =-\frac{2}{9} \\
\mathrm{~V} & =\frac{2}{9}+4=\frac{38}{9} \\
\mathrm{R}_{\mathrm{Th}} & =\frac{38}{9} \mathrm{~W} \\
\mathrm{~V}_{\mathrm{Th}} & =\mathrm{R}_{\mathrm{Th}} \mathrm{I}_{\mathrm{SC}}=10 \mathrm{~V}
\end{aligned}
$$

50.(B) Given: $P=2 \quad ; Z=960$
$V_{a}=100 v=I_{a 1} R_{a}$
$\mathrm{P}_{\mathrm{i}}=300$ watt
$R_{a}=3.5$ ohms
Find $X_{a}=$?
$\square_{\mathrm{m}} /$ pole $=$?
$\mathrm{P}_{\mathrm{i}}=\mathrm{VI} \cos$
$\square \cos \square=\mathrm{P}_{\mathrm{i}} / \mathrm{VI}=300 / 100 \times 4.6=300 / 460$
$=0.652$
Now $E_{b a c}=V \cos \square I_{a} R_{a}=100 \times 0.652-4.6 \times 3.5$
and $V^{2}=\left(E_{b a c}+I_{a} R_{a}\right)^{2}+\left(I_{a} X_{a}\right)^{2}$
$100^{2}=(49.1+4.6 \times 3.5)^{2}+\left(4.6 \mathrm{X}_{\mathrm{a}}\right)^{2}$
$\left(4.6 \mathrm{X}_{\mathrm{a}}\right)^{2}=100^{2}-(49+16.1)^{2}=10000-(65.2)^{2}$
$=10,000-4251.04=5748.96$
$21.16 \mathrm{Xa}^{2}=5748.96$

Toll Free: 1800-2000-092
Phone: 0744-2429714
Website: wWW.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 40

$$
\square \mathrm{X}_{\mathrm{a}}=\square 5748.96 / 21.16
$$

$$
=16.48 \square
$$

51.(A) $\mathrm{E}_{\mathrm{bdc}}=\mathrm{V}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=100-4.6 \times 3.5=83.9 \mathrm{~V}$
and $E_{b d c}=N \square m P Z / 60 A$

$$
\begin{array}{r}
83.9=5000 \square_{\mathrm{m}} \times 2 \times 960 / 60 \times 2 \\
\square_{\mathrm{m}}=83.9 / 8.0 \times 10^{4}=1.048 \times 10^{-3} \mathrm{wb}
\end{array}
$$

52.(A) $\quad(s l-A)^{-1}=\left[\begin{array}{cc}s & 1 \\ 0 & s+3\end{array}\right]=\frac{\operatorname{Adj}(s \mid-A)}{|s|-A \mid}=$

$$
\begin{aligned}
f(t) & =L^{-1}(s l-A)^{-1} \\
& =\left[\begin{array}{cc}
1 & \frac{1}{3}\left(1-e^{-3 t}\right) \\
0 & e^{-3 t}
\end{array}\right]
\end{aligned}
$$

53.(C) Zero state response $=L^{-1} \square(s) B \cup(S)$

$$
L^{-1}\left[\begin{array}{cc}
\frac{1}{s} & \frac{-1}{s(s+3)} \\
0 & \frac{1}{s+3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \frac{1}{s}=L^{-1}\left[\begin{array}{c}
\frac{1}{s^{2}} \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

State transition equation =zero input response + zero state response.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
Page 41

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, CLAT, ISEET, SLET, CTET, TIFR, NIMCET, JEST etc.

$1 \times R=151.51 \times 20=3.03 \mathrm{kV}$

$$
E_{\text {end }}=\sqrt{6.6^{2}+3.03^{2}}=7.2 \mathrm{kV}
$$

55.(C) Torque angle, $\square=\tan ^{-1} \frac{3.03}{6.6}=24.6^{\circ}$
56.(B)

57.(B) The Antonym of MORTAL is Immortal
58.(D) The Synonym of ALERT is Watchful
59.(C)

Profit $=$ Rs. $(392-320)=$ Rs. 72.
60.(B) Changing the symbols as given in the problem the above expression is
$56 \div 7+13 \times 11-15 \times 8+2 \times 7$
Solving the BODMAS rule, we get $8+143-120+14=165-120=45$
61.(B) 'Captain' is supposed to lead the battalian of 'Soldiers' int he same way as 'Leader' is supposed to lead the 'Followers'.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829567114, 9829597114, 9001297243
Phone: 0744-2429714
Website: www.vpmclasses.com
E-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005
62.(B) mutton:sheep
63.(C) My uncle decided to take me and my sister to the market.
64.(B) The exports are more than imports in those years for which the exports to imports ratio are more than For Company A, such years are 1995, 1996 and 1997.
Thus, during these 3 years, the exports are more than the imports for Company A.
65.(B) This is a simple subtraction series. Each number is 6 less than the previous number.

Toll Free: 1800-2000-092
Phone: 0744-2429714
Mobile: 9001297111, 9829567114, 9829597114,9001297243
e-Mail: vpmclasses@yahoo.com /info@vpmclasses.com
Address: 1-C-8, Sheela Chowdhary Road, SFS, TALWANDI, KOTA, RAJASTHAN, 324005

